Motion-Correction Enabled Ultra-High Resolution In-Vivo 7T-MRI of the Brain

نویسندگان

  • Christian Federau
  • Daniel Gallichan
چکیده

OBJECTIVES To demonstrate the image quality that can be obtained for multiple contrasts using ultra-high resolution MRI (highest nominal resolution: 350 μm isotropic) at 7T using appropriate motion-correction. MATERIALS AND METHODS An MRI-based fat-excitation motion navigator (which requires no additional hardware) was incorporated into T1-weighted (MP2RAGE, 350 μm nominal isotropic resolution, total scan time 124 mins over 2 sessions. The MP2RAGE also provides quantitative T1-maps), 3D-TSE (380 μm nominal isotropic resolution, total scan time 58 mins) and T2*-weighted protocols (3D-GRE, 380 μm nominal isotropic resolution, total scan time 42 mins) on a 7T MR system. Images from each contrast are presented from a single healthy adult male volunteer (34 years) for direct comparison. The subject provided written consent in accordance with the local review board. RESULTS Images of various brain structures are revealed at unprecedented quality for in-vivo MRI. The presented images permit, for example, to delimit the internal structure of the basal ganglia and thalamus. The single digitationes of the hippocampus are visible, and the gyrus dentatus can be visualized. Intracortical contrast was also observed in the neocortex, including the stria of Gennari of the primary visual cortex. CONCLUSIONS Appropriate motion-correction allows MRI scans to be performed with extended scan times enabling exceptionally high resolution scans with high image quality, with the use of a 7T scanner allowing large brain coverage for 350-380 μm isotropic voxels with total scan times for each contrast ranging from 42 to 124 minutes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-resolution diffusion MRI at 7T using a three-dimensional multi-slab acquisition

High-resolution diffusion MRI can provide the ability to resolve small brain structures, enabling investigations of detailed white matter architecture. A major challenge for in vivo high-resolution diffusion MRI is the low signal-to-noise ratio. In this work, we combine two highly compatible methods, ultra-high field and three-dimensional multi-slab acquisition to improve the SNR of high-resolu...

متن کامل

Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction

High field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort fo...

متن کامل

7 Tesla magnetic resonance imaging for neurodegenerative dementias in vivo: a systematic review of the literature

The spatial resolution of 7T MRI approaches the scale of pathologies of interest in degenerative brain diseases, such as amyloid plaques and changes in cortical layers and subcortical nuclei. It may reveal new information about neurodegenerative dementias, though challenges may include increased artefact production and more adverse effects. We performed a systematic review of papers investigati...

متن کامل

Cortical thickness determination of the human brain using high resolution 3 T and 7 T MRI data

PURPOSE The analysis of the human cerebral cortex and the measurement of its thickness based on MRI data can provide insight into normal brain development and neurodegenerative disorders. Accurate and reproducible results of the cortical thickness measurement are desired for sensitive detection. This study compares ultra-high resolution data acquired at 7T with 3T data for determination of the ...

متن کامل

A cytoarchitecture-driven myelin model reveals area-specific signatures in human primary and secondary areas using ultra-high resolution in-vivo brain MRI

This work presents a novel approach for modelling laminar myelin patterns in the human cortex in brain MR images on the basis of known cytoarchitecture. For the first time, it is possible to estimate intracortical contrast visible in quantitative ultra-high resolution MR images in specific primary and secondary cytoarchitectonic areas. The presented technique reveals different area-specific sig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016